Boundary control of a nonlinear Stefan Problem
نویسندگان
چکیده
Abstract— The classical Stefan problem is a linear onedimensional heat equation with a free boundary at one end, modelling a column of liquid (e.g. water) in contact with an infinite strip of solid (ice). Given the fixed boundary conditions, the column temperature and free boundary motion can be uniquely determined. In the inverse problem, one specifies the free boundary motion, say from one steady-state length to another, and seeks to determine the column temperature and fixed boundary conditions, or boundary control. This motion planning problem is a simplified version of a crystal growth problem. In this paper, we consider motion planning of the free boundary (Stefan) problem with a quadratic nonlinear reaction term. The treatment here is a first step towards treating higher order nonlinearities as observed in crystal growth furnaces. Convergence of a series solution is proven and a detailed parametric study on the series radius of convergence given. Moreover, we prove that the parametrization can indeed be used for motion planning purposes; computation of the open loop motion planning is straightforward and we give simulation results.
منابع مشابه
Nonlinear Two-Phase Stefan Problem
In this paper we consider a nonlinear two-phase Stefan problem in one-dimensional space. The problem is mapped into a nonlinear Volterra integral equation for the free boundary.
متن کاملTHE STEFAN PROBLEM WITH KINETIC FUNCTIONS AT THE FREE BOUNDARY
This paper considers a class of one-dimensional solidification problem in which kinetic undercooling is incorporated into the temperature condition at the interface. A model problem with nonlinear kinetic law is considered. The main result is an existence theorem. The mathematical effects of the kinetic term are discussed
متن کاملUNIQUENESS OF SOLUTION FOR A CLASS OF STEFAN PROBLEMS
This paper deals with a theoretical mathematical analysis of one-dimensional solidification problem, in which kinetic undercooling is incorporated into the This temperature condition at the interface. A model problem with nonlinear kinetic law is considered. We prove a local result intimate for the uniqueness of solution of the corresponding free boundary problem.
متن کاملThermal Simulation of Solidification Process in Continuous Casting
In this study, a mathematical model is introduced to simulate the coupled heat transfer equation and Stefan condition occurring in moving boundary problems such as the solidification process in the continuous casting machines. In the continuous casting process, there exists a two-phase Stefan problem with moving boundary. The control-volume finite difference approach together with the boundary ...
متن کاملNewton-Product integration for a Two-phase Stefan problem with Kinetics
We reduce the two phase Stefan problem with kinetic to a system of nonlinear Volterra integral equations of second kind and apply Newton's method to linearize it. We found product integration solution of the linear form. Sufficient conditions for convergence of the numerical method are given and their applicability is illustrated with an example.
متن کاملNewton-Product Integration for a Stefan Problem with Kinetics
Stefan problem with kinetics is reduced to a system of nonlinear Volterra integral equations of second kind and Newton's method is applied to linearize it. Product integration solution of the linear form is found and sufficient conditions for convergence of the numerical method are given. An example is provided to illustrated the applicability of the method.
متن کامل